Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage.
نویسندگان
چکیده
Embryonic development requires generating cell types at the right place (spatial patterning) and the right time (temporal patterning). Drosophila neuroblasts undergo stem cell-like divisions to generate an ordered sequence of neuronal progeny, making them an attractive system to study temporal patterning. Embryonic neuroblasts sequentially express Hunchback, Krüppel, Pdm1/Pdm2 (Pdm), and Castor (Cas) transcription factors. Hunchback and Krüppel specify early-born temporal identity, but the role of Pdm and Cas in specifying temporal identity has never been addressed. Here we show that Pdm and Cas regulate late-born motor neuron identity within the NB7-1 lineage: Pdm specifies fourth-born U4 motor neuron identity, while Pdm/Cas together specify fifth-born U5 motor neuron identity. We conclude that Pdm and Cas specify late-born neuronal identity; that Pdm and Cas act combinatorially to specify a temporal identity distinct from either protein alone, and that Cas repression of pdm expression regulates the generation of neuronal diversity.
منابع مشابه
Pdm and Castor close successive temporal identity windows in the NB3-1 lineage.
Neurogenesis in Drosophila and mammals requires the precise integration of spatial and temporal cues. In Drosophila, embryonic neural progenitors (neuroblasts) sequentially express the transcription factors Hunchback, Kruppel, Pdm1/Pdm2 (Pdm) and Castor as they generate a stereotyped sequence of neuronal and glial progeny. Hunchback and Kruppel specify early temporal identity in two posterior n...
متن کاملTRANSCRIPTIONAL REGULATION OF EARLY PROGENITOR COMPETENCE IN THE DROSOPHIIA CENTRAL NERVOUS SYSTEM by KHOA
Original approval signatures are on file with the Graduate School and the University of Oregon Libraries. Neurogenesis in Drosophila and mammals requires the precise integration of spatial and temporal cues. In Drosophila, embryonic neural progenitors, called neuroblasts, sequentially express the transcription factors Hunchback, Kruppel, Pdml/Pdm2 (Pdm) and Castor as they divide to generate a s...
متن کاملRegulation of neuroblast competence: multiple temporal identity factors specify distinct neuronal fates within a single early competence window.
Cellular competence is an essential but poorly understood aspect of development. Is competence a general property that affects multiple signaling pathways (e.g., chromatin state), or is competence specific for each signaling pathway (e.g., availability of cofactors)? Here we find that Drosophila neuroblast 7-1 (NB7-1) has a single early window of competence to respond to four different temporal...
متن کاملDrosophila Neuroblasts Sequentially Express Transcription Factors which Specify the Temporal Identity of Their Neuronal Progeny
Neural precursors often generate distinct cell types in a specific order, but the intrinsic or extrinsic cues regulating the timing of cell fate specification are poorly understood. Here we show that Drosophila neural precursors (neuroblasts) sequentially express the transcription factors Hunchback --> Krüppel --> Pdm --> Castor, with differentiated progeny maintaining the transcription factor ...
متن کاملRegulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS.
POU transcription factors participate in cell-identity decisions during nervous system development, yet little is known about the regulatory networks controlling their expression. We report all known Drosophila POU genes require castor (cas) for correct CNS expression. drifter and I-POU depend on cas for full expression, whereas pdm-1 and pdm-2 are negatively regulated. cas encodes a zinc finge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 20 18 شماره
صفحات -
تاریخ انتشار 2006